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It is well known that paraboloidal antenna aperture efficiency is enhanced by
providing aperture illumination which approaches uniformity in amplitude, phase,
and polarization. For dual-reflector antenna systems, such as those used in the
DSN, a high degree of uniformity is possible by use of specially shaped reflector
surfaces (Ref. 1). As a long-range solution to the problem of achieving high aper-
ture efficiency, this approach is attractive because it is inherently broadband and
requires only a simple feedhorn of the type presently being utilized in the DSN.
An alternate approach for achieving high aperture efficiency (suggested by
D. Bathker of the Communications Elements Research Section) involves use of the
existing antenna reflecting surfaces together with a more complex multimode
feedhorn. This approach is attractive from an implementation standpoint. Prelimi-
nary experimental results (obtained by R. Thomas of the Communications Ele-
ments Research Section) are promising. The multimode technique does, however,
suffer from bandwidth difficulties, at least with presently known mode-generation
techniques. To assist and guide the multimode feedhorn experimental effort, a new
computer program has been developed which computes horn radiation patterns
and bandwidth properties as a function of horn geometry. This article describes the
analytical technique utilized and agreement with existing experimental data.

I. Introduction

For the case of conical horns with modest or small
flare angles, the amplitude patterns may be calculated to
good accuracy by expanding the aperture fields in cylin-
drical waveguide modes and utilizing the radiation pat-
tern formulas given by Silver (Ref. 2). An early but
definitive work on the effect of neglecting the horn flare
angle by Ludwig (Ref. 3) showed that the propagation
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characteristics of conical waveguide modes differ from
those of cylindrical waveguide modes in a simple and
predictable way. In a detailed analysis of the differences
in aperture illumination functions between cylindrical
and conical modes, Narasimhan and Rao (Ref. 4) demon-
strate that, for semi-flare angles up to 20 deg, the fields on
a spherical cap in the horn aperture are very well
approximated by the standard cylindrical (Bessel func-
tion) fields.
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The first good conical feedhorn to be developed was the
dual-mode horn reported by Potter (Ref. 5). This horn
has many desirable performance features, together with a
convenient physical configuration, but suffers from a
bandwidth problem. The dual-mode horn concept was
extended by Ludwig (Ref. 6) to the case of many modes.
Ludwig used cylindrical waveguide functions and showed
good experimental results for a four-mode horn. Later,
Minnet and Thomas (Ref. 7) reported a new technique
for achieving the same performance as the dual-mode
horn (Ref. 5) but over a large bandwidth. This method
consists of utilizing a high-impedance wall in the horn,
physically realized by circumferential grooves approxi-
mately one-quarter wavelength deep. The two modes in
such a horn (TE;, and TM,,) propagate with the same
velocity and are both necessary in a certain phase and
amplitude relationship to satisfy the horn wall boundary
conditions. The two modes are therefore called a single
hybrid mode, designated the HE,, mode. A horn of this
type is presently the standard design for the DSN 64-m-
diameter antennas (Ref, 8).

B. Mac A. Thomas later extended his hybrid-mode horn
analysis to the case of multiple hybrid modes (Ref. 9). In
order to get closed-form solutions for the modal radia-
tion patterns, Thomas assumed a planar aperture with
cylindrical hybrid modes. A definitive review of hybrid-
mode propagation and aperture radiation for both cylin-
drical and conical configurations has been published by
Clarricoats and Saha (Refs. 10 and 11).

Clarricoats et al. (Ref. 12) developed a spherical wave
technique for computing hybrid-mode horn radiation
patterns and showed good agreement with experimental
data. Professor Clarricoats was kind enough to send
a copy of the computer program developed by his group
for performing these radiation pattern calculations. Un-
fortunately, his program (written in ALGOL) was not
easily adaptable for use with the JPL Scientific Comput-
ing Facility (SCF). Additionally, certain extra features
were desired in the program. For these reasons, a new
program was written in FORTRAN IV for use on the SCF
Univac 1108 computer. This program utilizes Clarricoats’
spherical wave technique (Ref. 12) and his cylindrical
hybrid-mode equations (Ref. 10) but uses a spherical cap
aperture with the field approximation of Ref. 4. This
procedure produces very accurate results for small flare-
angle horns such as those employed in DSN antennas.
The new computer program has been checked out and
results have been compared with experimental data. The
program is described in the next section.
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Il. Computer Program Description

Figure 1 shows the selected horn geometry. The phas-
ing section may have zero length as a special case, or
may be utilized to phase a pair of hybrid modes for
proper relationship. The computer program, HYBRID-
HORN, assumes that the amplitude of the hybrid modes
in the aperture is known and has an input for adjustment
of mode amplitudes; in actual practice, the mode
amplitudes are controlled by the mode-generator geom-
etry. The phases of the hybrid modes at the input of the
phasing section (mode generator) are also input. The re-
sulting phases at the aperture are computed by numerical
integration of the propagation constants in the phasing
section and flare. The propagation constants in the flare
are calculated using the cylindrical-guide-arc length
technique developed by Ludwig (Ref. 3). The only other
program inputs are the horn physical geometry and
various output options. A typical case (one geometry at
one frequency) takes about 20 s of SCF Univac 1108
execution time,

The program presently assumes unity (m = 1) azi-
muthal field variation, although it could easily be up-
graded for modes with arbitrary azimuthal variation. The
m = 1 variation is that which is normally desired in an
antenna feed. The field equations in the horn plane are
given by (Ref. 10):

E,, = (E,) [J:(x)] sin ¢a, (1a)
E,
H, = — ( Z > (BAL,) [J.(x)] cos ¢a, (1b)
k Ja(x)
E., = _,-<E")(Kn>[ ]
X [B,* Fn(x) + BAL,] sin ¢a, (1c)
k Ji(x
e () [12]
X [Bn + Fn(x) * BAL,] cos ¢ay (1d)
LEN [ kT LG
Hon = +’(7J> (r)[ 2y
X [Bn*BAL,* Fu(x) + 1] cos ¢a, (le)
( E. k J1(x)
Hon = "<z—o> (7{)[ =y
X [Bn* BAL, + F,(x)] sin $ay (1f)
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GROOVE = groove depth
B
BAL = = F.m)

The normalized longitudinal propagation constant B is
determined by numerical solution of Eq. (2). The wall

reactance, ZGROOV, is given by
(Z,)x;

R = — TR
ZGROOV Sula ) (3)
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At the frequency of operation for which BAL, is =1, the
hybrid mode is said to be balanced. Modes for which the
BAL, are positive quantities are normally desired and are
designated HE,,. At the balance frequency, the HE,,
modes exhibit almost perfect symmetry between E- and
H-planes. Modes for which the BAL, are negative are
designated EH,, modes and are normally undesirable
since they are grossly unsymmetrical between E- and
H-planes.

An interesting and important special case of Egs.
(1a)—~(1f) is that for which the groove depth approaches
zero, i.e., the horn becomes a standard smooth-wall horn.
For this case, BAL, approaches a positive zero (HE,
modes) or a negative infinity (EH,, modes). Examination
of the equations for smooth-wall cylindrical waveguides
(Ref. 2) shows that Eqgs. (1a)-(1f) become the smooth-wall
equations, with HE,, modes becoming TM,, modes and
EH,, modes becoming TE,, modes. The case of TE,, and
TM,, is of particular interest since it corresponds to the
dual-mode conical horn (Ref. 5), for which good experi-
mental data are available and which is still being used for
special applications such as gain standards. The computer
program HYBRIDHORN has an internal switch so that it
will handle the case of zero groove depth (smooth-wall
horn).

lll. Comparison with Experimental Data

Figure 2 shows a comparison of HYBRIDHORN com-
puted data (TE,, and TM,; modes only) for the smooth-
wall JPL/NBS Standard Gain Horn (Ref. 13), which is a
scale model of the original dual-mode horn design (Ref. 5).
The H-plane agreement is almost perfect. The minor dis-
crepancies in E-plane are not presently understood. An
attempt was made to improve agreement with experi-
mental data by addition of radiation from currents at the
edge of the horn aperture. Significant improvement was
not obtained, however. One possibility for the E-plane
discrepancies not yet investigated is the presence of
significant amounts of modes other than TE,, and TM,,
— the TE,; in particular. Although the horn design (Ref. 5)
is such that higher-order modes are severely attenuated,
the exact degrees of attenuation and the generated ampli-
tudes have not been calculated or measured.

Figure 3 shows a comparison of HYBRIDHORN com-
puted and measured data for the DSIF single hybrid-
mode corrugated horn (Ref, 8). These recently obtained
measured patterns were taken by R. Thomas and O. Hester
of the Communications Elements Research Section, using
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the JPL Mesa Antenna Range Facility, with the same
basic setup described in Ref. 13. The excellent agreement
between computed and measured patterns demonstrates
the high quality of the experimental data and the implied
accuracy of the HYBRIDHORN computer program.

Figure 4 shows computed and measured amplitude
patterns (phase data were not available) for an experi-
mental dual hybrid-mode horn.*

Section IV briefly discusses a novel use of the DSIF

standard corrugated feedhorn design, in conjunction with
the HYBRIDHORN program.

IV. Possible Use of the DSIF Corrugated
Feedhorn Design as a Gain Standard

The HYBRIDHORN computed pattern shown in Fig. 2
was numerically integrated; the computed directivity is

*The computed data are for HE,, and HE,, modes only. The
possibility of additional modes in the experimental data exists.
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21.990 dB. Despite the minor pattern discrepancies, this
number compares favorably with the JPL/NBS horn
calibration directivity of 22.04 +0.10 dB, 3¢, quoted in
Ref. 13. The computed directivity of the single hybrid-
mode horn pattern shown in Fig. 4 is 22.370 dB (at
8.448 GHz). Because this horn is a single-mode horn,
there is no question of whether the HYBRIDHORN
program has the correct inputs; thus the confidence level
in the 22.370-dB number is high. As a gain standard, the
corrugated horn has a number of attractive features rela-
tive to the JPL/NBS horn, including lower dissipative
loss, lower E-plane aperture edge illumination (hence less
exterior currents), broad bandwidth, and more accurately
calculable performance. These features bear further ex-
amination.
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Fig. 1. Horn geometry
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